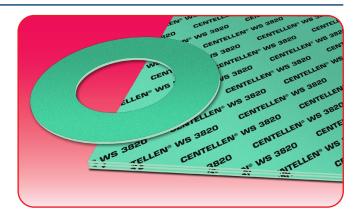
# **CENTELLEN® WS 3820**




# CENTELLEN® WS 3820 – is a universal gasket grade with high mechanical strength. The tightness fulfils the requirements for sealants of the natural gas industry.

Centellen® WS 3820 is a calandered material. It consists of aramid fibers, inorganic fillers for reinforcement and NBR as binder. The sheets are manufactured with a thin layer of anti-stick coating. The universal chemical compatibility is therefore not affected. This universal gasket sheet material is suitable for a medium temperature range (DIN 28091 FA – A1 – 0). The material is suitable for hydrocarbons like oils or solvents, alcohols, glycols, aqueous solutions, water and steam up to 200°C. Weak alkalines and organic acids are also among possible applications.

Centellen® WS 3820 offers high plant safety for a variety of applications.

| Basis composition | Aramid fibers bonded with NBR.                                             |
|-------------------|----------------------------------------------------------------------------|
| Color             | Green / Green                                                              |
| Certificates      | in progress (DVGW, TA Luft (Clean<br>air), BAM tested, DVGW W 270,<br>HTB) |



This material is limited suitable for ketones and esters, chlorinated solvents, as well as strong alkalis and inorganic acids.

Manufactured by KLINGER

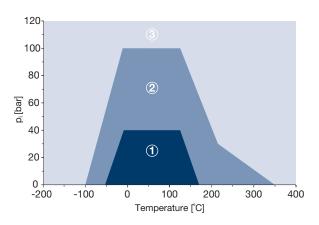
| Sheet size | 1000 x 1500 mm, 2000 x 1500 mm                                            |  |  |  |
|------------|---------------------------------------------------------------------------|--|--|--|
| Thickness  | 0.5 mm, 1.0 mm, 1.5 mm,<br>2.0 mm, 3.0 mm<br>Other thicknesses on request |  |  |  |

#### **Tolerances**

Thickness according to DIN 28091-1

Length:  $\pm$  50 mm Width  $\pm$  50 mm

#### **Industry**

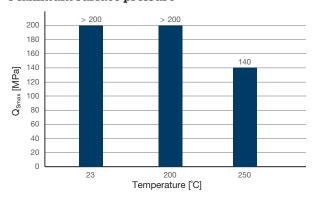

General Industry / Chemical / Oil & Gas / Energy / Infrastructure / Pulp & Paper

# TECHNICAL DATA - Typical values for a thickness of 2.0 mm

| Density                        |                             | g/cm <sup>3</sup> | 1.85  |
|--------------------------------|-----------------------------|-------------------|-------|
| Compressibility                | ASTM F 36 J                 | %                 | 10    |
| Recovery                       | ASTM F 36 J                 | %                 | 60    |
| Stress relaxation DIN 52913    | 50 MPa, 16 h/175°C          | MPa               | 30    |
|                                | 50 MPa, 16 h/300°C          | MPa               | 25    |
| KLINGER cold/hot compression   | thickness decrease at 23°C  | %                 | 10    |
| 50 MPa                         | thickness decrease at 300°C | %                 | 25    |
| Tightness                      | DIN 28090-2                 | mg/(s x m)        | 0.02  |
| Thickness increase after fluid | oil IRM 903: 5 h/150°C      | %                 | 5     |
| immersion ASTM F 146           | fuel B: 5 h/23°C            | %                 | 8     |
| Cold compression               | DIN 28090-2                 | %                 | 8     |
| Cold recovery                  | DIN 28090-2                 | %                 | 4     |
| Hot compression                | DIN 28090-2                 | %                 | 25    |
| Hot recovery                   | DIN 28090-2                 | %                 | 3     |
| Max. surface pressure EN 13555 | 23°C                        | N/mm²             | > 200 |
|                                | 200°C                       | N/mm²             | > 200 |
|                                | 250°C                       | N/mm²             | 140   |

#### **CENTELLEN® WS 3820**

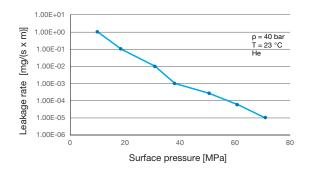
## P-T diagram




#### The area of the P-T diagram

- 1 In area one, the gasket material is normally suitable subject to chemical compatibility.
- 2 In area two, the gasket material may be suitable but a technical evaluation is recommended.
- (3) In area three, do not install the gasket without a technical evaluation.

Always refer to the chemical resistance of the gasket to the media.


### Maximum surface pressure



# Maximum permissible surface pressure in operating conditions $Q_{\text{Smax}}$ acc. to EN 13555

The maximum surface pressure in operating condition is the maximum permissible surface pressure the gasket can be loaded at the specified temperatures, without crucial plastic deformation and/or destruction of the gasket.

#### **Tightness performance**



## The tightness performance graph

The graph shows the required stress at assembling to seal a certain tightness class. The determination of the graph is based on EN13555 test procedure which applies 40 bar Helium at room temperature. The sloping curve indicates the ability of the gasket to increase tightness with raising gasket stress.

#### Chemical resistance chart

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

| CENTELLEN®                | WS 3820       |          |                                      |              |                       | A: small or no attack |        | B: weak till moderate attack |       | C: strong attack  |                   |
|---------------------------|---------------|----------|--------------------------------------|--------------|-----------------------|-----------------------|--------|------------------------------|-------|-------------------|-------------------|
| Paraffinic<br>hydrocarbon | Motor<br>fuel | Aromates | Chlorinated<br>hydrocarbon<br>fluids | Motor<br>oil | Mineral<br>lubricants | Alcohol               | Ketone | Ester                        | Water | Acid<br>(diluted) | Base<br>(diluted) |
| Α                         | В             | С        | С                                    | Α            | В                     | Α                     | С      | С                            | Α     | Α                 | Α                 |

All information is based on years of experience in production and operation of sealing elements. However, in view of the wide variety of possible installation and operating conditions one cannot draw final conclusions in all application cases regarding the behaviour in gasket joint. The data may not, therefore, be used to support any warranty claims. This edition cancels all previous issues. Subject to change without notice.

